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Some simple theoretical examples of time series in m dimensions, their main

properties, estimation, and forecasting are given. These are generalizations
of the usual time series to events in both time and space. How these models
may be simulated is explained. One Practical example of flooding on the

<Mohawk River is given. Included are new results in forecasting; the regions
for permissible values of the autocorrelation and cross correlations; and
methods for obtaining these correlations.

1. INTRODUCTION

The purpose of this paper is to give a short introduction to the main ideas
of time series in m dimensions'. These simple examples are concerned with
results in only one dimension. Full generality to m dimensions is given in
the papers of Aroian and his collaborators. The usual time series is in zero
dimensions. The same methods apply to purely spatial series if time is not a
consideration; spatial series are explored in a forthcoming paper of Aroian
and Gebizlioglu (1). Every event occurs in time and space. An event has
many characteristics; only the univariate case is trested here. For the
multivariate case, see Aroian (2). As examples, if m - 1, note the charac-
teristics of a river, and as a generalization any process involving a flow.
If m = 2, examples are physical processes as a storm, rainfall over a region,
the changing physical or social processes over time in a restricted region;
for m - 3, examples are the positions of satellites, sunspots on the sun,
geological processes and earthquakes, storms in space, or characteristics
over an (C ,,lt) coordinate system. Social, industrial, scientific,
geophysical ai wll as other processes may be explained by these models.

2. ARMA MODEL

The autoregressive moving average model, m - 1, is defined for m - 1, rI f r2
- 2 by:

Zx, t = 1Zx,t-l+¢2zx-l,t-l-elax,t-1-62axclt-,+ax,t (2.1)

The characteristic z in which one is interested is given as a linear
combination of two pht values of z at (x,t-l) and (x-l,t-l), r2 - 2; and two
past values of a variable a random shocks, with an error
ax,t , r1 - 2. We assume zx -tI w:1tt;i;ationary, E(Zx,t) - 0 (with no loss

generality), E(z 2 ).a
2 
<, E(zx_ z )-a 2 - < x <- -= <t<xz t xt i Y t2 iz x-y,t - 2 '

is an independent random variable with mean ero, variance E(z _ z t
E(ax,tx1itk) - 0, unless I - k - 0, when it is o and ax, t is indeendet

of Zx.f,t-k unless I - k - 0.

If 01 0 ¢2 - 0, then

zx,t a -a 0-a (2.2)
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x =t 1 't- l- 2a x-t-l,

P. 3 (4.1) Z =t

P. 3, 94t r = s = 10

P. 4, £22 Replace (3) by (2)

P. 4 (5.1) p 1,82 =
11 10*

P. 6 (6.7) W = (POI-Plp )(1-p 2 0)

P. 6, 3 (6.5) and (6.9) are satisfied.

P. 7 (6.10) PO 1 ,4)2 =

P. 9 (7.6) = 2i-li-

2
P. 10 (8.5) a (1,2)

e 
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x,tP. 10 (8.10) aO2 (ilt2

P. 11 (8.13) 02
X 1' 2

P. 12 Add (10) Campbell,D. & Schaeffer, D.J. (1979). Pollution
in the Chicago Saniti ry and Ship Canal. Environmental
Management, 3, 283-28B.
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is a moving average MA model ml 1, r1 I 2; if 6~ 1 62 -0

ax,t . #I zX,t..l+62Zx.l,t..l+ax,t (2.3)

is an autoregressive AR model m - 1, r 2 - 2.

If the t variable is omitted and if in Equlktion (2.1) one replaces x and x-l
on the right hand side by x-l and x-2 except in a one gets a purely
spatial model; while if the x variable is omittedl'8ne gets the usual time
series. A simpler AR)4A model is obtained if one sets t -e -0, or
4,0 6 = 0. The MA model, the AR model, and the ARMA Aodel'with their

ppoeis wil be considered.

3. PROPERTIElS OF TI1E MA MODEL

The autocorrelation function of the MA model, the values which 6 and 6 may
have, and the corresponding AR model with an infinite set of coeificienis
will be given. From Voss et al. (3) , the variance

2 2 (+2(2(310
z Ga 1 l+2) 31

and the correlations

001 (l+e 2+e 2 ) .- ell CIO0(1+012+6 2) 6 e1e

011 (1+e 2+e2) .- 0~2 (3.2)

all other autocorrelations are zero. Mote 0l P l~O a 1  1

This curtoff property of the autocorrelation function aids in the identifica-
tion of an MA model in - 1, r - 2. A corresponding cutoff property is true
for any MA model, (m,r). Reirite (2.2) as

2
x,t = (1-e 1B -62B B~ )ax~ (3.3)

where BtxtI xt1 B Exaxt I ax l't' and 1-e 1B-62B B t is called the

generating function or characteristi.c polynomial of the MA model. Rewrite
(3.3) as

a =t(I- ~~ 28Bt 1 z X, t.f~1 (61+e2Bx)!SB!)zx (3.4)

This is an infinite AR model representation of (2.2) provided le 11+1(121<l.
* ,since IBxlk1, IBtl for convergence of (3.4). Every MA process is

stationary but for a representation as an infinite AR model, the condition
le 1 1+16 2 1<1 is necessary. Mote the coefficients of zx..Rt-k approach zero

as Ilk -. -. These results may also be obtained by successive substitutions
in (2.2), or by Straightforward division. From (3.2) we infer

12

61 -,,,/Pl1' 02 - 0lO/001l 01 - (e0201)/oil. (3.6)

62 2 (3.7)
2(01+011 it

Hence 2-( 2 +Pl > 0, or 02+021 1/4, (3.8)

circle of radius 1/2. From e2 -oc/~,we conclude CI -j eo62 Froil.,
]eil * 1021(1, the added restrictions apply: "A

~l0a < 1/0,, + 1/Do,1 1/010 if OzolOo < 1, or ,
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I/1 4/i l/%jl < -1/010 if -1 < 1 . 0 .(3.9)

Thus the only values of (P0100.Cll1 possible are those in the intersection
of (3.8) and (3.9).

in sumimary, given 61 and 62then P 1 I and o 1 may be found from (3.2).

If arpresentation of (2.2 as an infinite Alt model (3.4) is desired, then
e 1 i1e 2 1<1 an~d the coefficients of this AR model are given by (3.4).

Additionally ipil 11i satisfy (3.6), (3.7), (3.8), and (3.9).

Conversely, given P011000111 which define an MA process (2.2), then if

(3.4) is satisfied, all equations (3.5), (3.6), (3.7), and (3.8) are
satisfied. Note P01 and 0 11 must satisfy (3.7) and consequently c .o

e2, Hence, given IP1II) 010 is determined. If an arbitrary set

i00-11,01 )are from some unknown time series in m dimensions the equations
(3.5), (3.6), (3.7), (3.8), and le ll+1621<l2 will not be satisfied. For

instance, let 6 .2, e2 . -. 5, 02= 1.
29

oa 01 -. 50 -075

0 :3876. All equations (3.5-3.9) are satisfied. The corresponding AR

M .sa' x,t *2x,t-l -. Z x..lt..l+.,04 x,t-2 - 2x-l,t-2 .5 x-2,t-2
4. 008Zx t- 062xlt-z 1Z ,- .125zx3,-+ ..etc. Suppose from a

simulation of this process the sample values are r - - .14, r~ - -.10,'
.40, to determine the estimated values of the coRltan t 5 (1 Pthree 1

equations must be satisfied, an impossibility. Inste ad iteiations art. used
in order to satisfy the (3.5) as closely as possible. The result is el..22,

2 2 2
55, 1+86+ 0 1.3509, and resulting r's from (3.5) are r0  -- 163,

rio - -09D, r11 - 407.

we rewrite

a X ~ 'O ji,j-i,t-j, '00 - 0 - '1 e 1 1 -l e2

~0 1 4l2 21 22 '2' 03 ' 1' 1 2

23 331 2. 6 , j - elo0j-1' 'jj elo i,j-i +6. ~ (3. 10)

e 2~i-~j-, ij 2 rj-il,-l

4. SIMULATION OF THE MA MODEL

Given {8l,62). jl+Ie2j<l, simulate

z S ax- -8axt 02 ax-l t-l (4.1)

by first generating a set of random numbers (ax , i0,1.2.,r+4,j0O,

1,2,...,s+4, from a distribution u-0,oclIflhisgives (r45)(s+5) values of a X+itj
random numbers. Then from these values of a's calculate (r+S) (s+5) values of
(2x i ~) with the chosen theoretical set (81.8 2) using (4.1). All a's not

generated as above are identically zero. Delete the first two rows, first
two columns, the last three rows and the last three columns of the Z matrix.
This produces a reduced Z matrix of rs value. Note the number five is chosen
for convenience, so an inner Z matrix may represent the process properly. In

the example e l.2, 62-5 and the ax5t s are normally distributed with p-0,

0,I, r-s-l0, zxt is given as the first number in each cell of Table 1. The

a~,the second number in each cell of Table 1 is not the 10X10 inner part
of 15X15 original Z but is determined from the IOX10 Z matrix by using

ax't Zx,t + 1a x,t-Il 2 ax-l't-l'(42



with 1-.2, ~--.5 where now ax,t 1 and a. are taken as zero for

initial starting values. Thus in the first row axt-zx~t. In the first

column all unknown a's for x<l are zero. In this way a set of a's are built
up slightly different from the inner IOXIO ax,t's obtainable from the 15X15

original Z matrix. This is done since in a sample of X, t the ax,t must be

determined in this way (although in practice the (81,82) would be unknown and
would be a set { 1 ,82) estimated from the sample zx,t a). in the second row

all needed a's are known as soon as the first a is determined, and subse-

quently for each row, since the needed a's in any cell are found by using the
Zx't in that cell and the ex.t 1 in the cell directly above and the ax-l,t.1

in the cell one to the left and above using (4.2). Thi set of a's is used
in finding all further Z's for all subsequent sets ~l',2 ). From the lOXl0

Z matrix determine r m n' i (the sample mean), C2 (the sample variance of z,

01, ri 0 , rl, 8l'82' using (3.5-3.7) iteratively as in 3. New estimates

zx,t may be found using any desired (1.82) particularly a set satisfying

(3.5-3.7) and having a minimum prediction error variance a= r(z X,t-xt)2

/(n-l). This is essentially.a least squares procedure. The minimum variance
procedure is to vary a set (81.82) in the plane such that 62 is a minimum.
The theoretical value of Is

2 a (11 2 2

where 81 and 82 are population values. This method is remarkably effective,

working well for autoregressive models also (3), Note z(xt) are values
from the minimum prediction error variance set 81=.208,82-. 413 almost

identical to the theoretical met (.2,-.Sl; while Z(x,t)2 are from {.333-.418-
the least squares set most nearly satisfying (3.5)-(3.7), which leads to a
theoretical (v01 , 10 ,cll) set of {-.259,-.108,.325) compared with an actual

{r10 ,r0 1 ,r11 ) of (-.255,-.133,.299) from zx, t . The values of r.n in Table

2 are those from zx, t(the notation of z(xt) in Table I is used for conven-

ience.) Further from (5.1) in the next section given {.2,-.5], the 95%
confidence interval for 81 is (.036,.364) and for 82 is (-.664,-.336) and

(.333,-.418) cuts these limits.

5. ESTIMATION

The variances and covariances of 4?l,62) are approximated by use of the sampl

estimates r01 , r10 , rlIinasample of n of P0 1 ,P1 0 ,P11 and the relationship
of the variance-covariance matrix of MA models which are the same as those of
AR models. From the results of Perry and Aroian (4),

-1 2 1 2 21 6 = n l-r10
)  

(1-8
2
-8

2
-288r and (5.181 82 (5.1)

61,2 'r 1 0.

These correspond to the least squares solution of the corresponding AR model

and if the ax,t are assumed to be distributed normally, these are close

approximations to the maximum likelihood estimates of {818 ) (See Box and

Jenkins, (5) p. 283, for similar case, m-0.) The starting values of ax t as

noted in the simulation would need to be considered for the maximum likeli-

hood solution. The method leading to (5.1) is general ond applies to the m
dimensional MA model. The minimum variance estimates {81.82) and the result-
ing estimates of the correlation between 1 nd 02 may be found as noted in

the next section for any set of data.



TABLE 1

Values of Z(x,t). &(x,t), Zlxt)1 , Z(xt) 2

t x 1 2 3 4 5 6 7 8 9 10
z(x,t) -1.478 0.81S -0.301 0.337 -1.277 0.527 0.210 -0.625 0.867 -1.668

I (xt) -1.478 0.815 -0.301 0.337 -1.277 0.527 0.210 -0.625 0.867 -1.668
-1.478 0.815 -0.301 0.337 -1.277 0.527 0.210 -0.625 0.867 -1.668

z(xt) 2 -1.478 0.815 -0.301 0.337 -1.277 0.527 0.210 -0.625 0.867 -1.668
2

z(xt -1.110 -1.410 1.541 0.126 -0.681 0.245 0.132 1.506 -1.602 -0.741

2 a(x't) -1.406 -0.508 1.073 0.343 -1.105 0.989 -0.090 1.276 -1.116 -1.508
*(xt)1 -1.098 -1.406 1.538 0.125 -0.673 0.250 0.127 1.510 -1.605 -0.734

z(xt) 2 -0.913 -1.397 1.514 0.106 -0.539 0.280 0.061 1.572 -1.666 -0.590

z(x,t) -0.105 -1.199 -0.701 -0.649 1.620 0.425 0.148 -0.124 0.595 -0.060
3 (x't) -0.386 -0.598 -0.232 -1.116 1.228 1.175 -0.364 0.176 -0.266 0.196
3ix t)1 -0.094 -1.185 -0.706 -0.659 1.626 0.425 0.142 -0.134 0.595 -0.040
z(xt) 2  0.082 -1.016 -0.802 -0.783 1.739 0.384 0.079 -0.286 0.639 0.232

zlx,t) 0.450 -0.484 -1.375 -0.278 -1.252 0.540 -0.343 0.767 -2.043 -0.903
9(x~t) 0.372 -0.411 -1.123 -0.385 -0.448 0.161 -1.003 0.984 -2.184 -0.731

4z(x,t)1 0.453 -0.477 -1.369 -0.267 -1.254 0.522 -0.348 0.768 -2.042 -0.903
z(xt) 2  0.501 -0.373 -1.295 -0.110 -1.324 0.283 -0.391 0.773 -2.022 -0.907

z(x.t) -2.642 0.460 -0.264 -1.163 -0.555 2.482 1.121 -1.062 0.911 -1.187
*t) -2.568 0.191 -0.284 -0.679 -0.452 2.739 0.840 -0.364 -0.01R -0.241

5 zfx't) -2.645 0.461 -0.252 -1.152 -0.549 2.484 1.128 -1.063 0.922 -1.166

z(xt) 2 -2.692 0.484 -0.081 -1.020 -0.464 2.497 1.241 -1.111 1.121 -0.911

ztx~t) 1.355 0.040 -0.401 -0.857 2.023 -1.367 -0.649 0.602 -0.917 -1.329

6 (xt) 0.842 1.362 -0.553 -0.851 2.272 -0.593 -1.850 0.109 -0.639 -1.368
S(x~t)1  1.376 0.056 -0.400 -0.850 2.031 -1.386 -0.674 0.599 -0.814 -1.327
Z(xt) 2 1.696 0.225 -0.379 -0.743 2.139 -1.694 -0.984 0.581 -0.785 -1.295

z(x,t) 0.554 -0.191 1.936 0.196 -0.843 1.234 -0.742 0.557 0.775 0.542
a(x,t) 0.722 -0.340 1.144 0.303 0.037 -0.021 -0.815 1.503 0.593 0.588

1x,t)1 0.547 -0.208 1.931 0.207 -0,855 1.223 -0.723 0.569 0.779 0.557
z(x t)2 0.442 -0.441 1.898 0.355 -1.075 1.127 -0.447 0.694 0.851 0.776

Z(xtt) 0.012 2.509 -1.481 0.012 0.692 -0.702 0.124 -2.361 0.689 1.718

8 (x,t) 0.157 2.080 -1.082 -0.499 0.548 -0.725 -0.029 -1.653 0.056 1.539
z(x1t) 0.006 2.507 -1.488 0.002 0.690 -0.702 0.131 -2.367 0.674 1.709
Z(x,t) 2 -0.084 2.495 -1.605 -0.122 0.662 -0.702 0.234 -2.494 0.487 1.591

Z(xt) 0.298 -1.145 2.832 0.688 -0.602 -1.427 -1.601 -0.279 -1.305 -0.124
a(xt) 0.329 -0.808 1.576 1.129 -0.243 -1.846 -1.244 -0.596 -0.467 0.156
9 1  0.297 -1.163 2.826 0.700 -0.603 -1.425 -1.596 -0.266 -1.294 -0.137

z(x,t)
1  

0.277 -1.434 2.805 0.843 -0.634 -1.376 -1.538 -0.057 -1.177 -0.333

z(x,t) -1.572 1.603 -0.668 1.921 1.776 1.193 -1.140 -0.279 1.135 -1.252

10 * (x,t) -1.506 1.277 0.051 1.359 1.162 0.945 -0.466 0.224 1.339 -0.988

1(x 1 -1 575 1.607 -0.675 1.901 1 770 1 209 :1.117 -0 266 1.143 :1.250z(X~t) 2 - 1.616 1:683 -0.811 1.642 1.716 1.458 -0.823 -0.098 1.246 -1.234

MEAN OF z(x.t) - -0.0757732 VAR. OF z(x,t) - 1.29559
MEA2 OF a( ,t) - -0.0620983 VAR. OF a(xt) - 1.03742

tfAN OF z(xt)1 - -0.0745114 VAR. OF z(x,t)1 - 1.29484

The prediction error variance of z(xt)1 - .00009444634
For z(x.t)l, 91 -. 208, 82 - -.493

EA OF z(x.,t) 2 - 0.0575717 VlAP. OF z(x.t) 2 - 1.32942

The predictiog error varence of z(x,t)2 - .0245026
For z(x,t)2 , e - .333, 2 - -.418

Where z(xt) 1 I: the prediction with i inimum error without regard to (3-5) to (3-8)

z(x,t) 2 is the prediction with miniumum error with qrqard to (3-5) to (3-8).
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TABLE 2

ESTIMATED CORRELATION COEFFICIENTS
rmn from x't

mn 0 I 2 3 4 5

-5 -.02440 -.08929 .01751 .09019 -.07126 .01399
-4 -.00683 -.01955 -.15060 .12190 -.06967 .06822

-3 .00744 -. 21941 -.09758 -. 16610 .14620 .06586

-2 -.04944 -.02406 .09758 .02137 .03338 .00839

-1 -.13263 .15886 -.05186 .07963 -.08132 .03068
0 1.0000 -.25518 .10146 .01626 -.05956 .02659
1 -.13263 .29921 .03112 -.13549 .03900 -.12985

2 -.04944 .05475 .02902 .05822 -.10431 .04176

3 .00744 -.00829 -.04685 .12587 .01059 .00946

4 -.00683 -.08132 .06358 -.00833 .07500 -.04081
5 -.02440 .00370 -.06670 -.05665 .05308 .01927

6. PROPERTIES OF THE AR MODEL

The properties of the AR model

zx,t = lx ~tl+¢xZx-l,t-laxlt (6.1)

are taken from Taneja and Aroian (6) and Perry and Aroian (4). These are:

the characteristic function,

4(Bx t ) 1 +02B)B (6.2)

the autocorrelation function,

0m,n " 1 0m,n-1+02Pm-1,n
- l ' 

m = n 3 0; (6.3)

the variance,

02 2 -1 (6.4)
z a(1 01201l) I

and the stationarity condition
I011-10 1<1; (6.5) ::

the Yule-Walker equations,

o01= €1+€2010 )11 , €1010€+2 (6.6)

with the solution:

€I " (01101 1 (010) (6.7)
2 -1

$2 " (11"001l0) (1"plo)

Since o2 0, then (001,010,011) are restricted by
2 2 2 2P0 10(6.6)010+001+11- 200101001110

If (6.8) is set equal to zero, then for each value of p (6.8) represents an
ellipse. The permissible values lie within the rectangig described in the
ellipses. The rectangle is bounded by

'+010001011(1<10, and

-1-0l0,001+011+010 (6.9)

While an Aft model is invertible, it is not stationary unless condition (6.9)

is satisfied. Note that given a permissible set of (o10,ll001] then f and

¢2 are determined by (6.7). However, if (41.02) are given, then (010,011o01)



are unique and may be determined from the corresponding AM model of the AR
model. An example, the depths of the Mohawk River, discussed briefly in the
Perry and Aroian paper (4) is being expanded from three points on the river
to ten points. The results will be used to predict floods along the Mohawk.
Let 0i . .2, 42 - -.6, o10 , -.20871, 001 , .32523, 1- -.64174. The

simulation of this set of (P10 ,P01 ,01 1) is accomplished by using the O's and

any set of starting values with the a's generated by any desired distribution.
The values of Pm,n for this example are given in the table for (mn) in the

first and second quadrants; the results in the third quadrant are the same as
those in the first quadrant, while the results in the fourth quadrant are the
same as those in the second quadrant. Thus pm,n ' P-m,-n' Om,-n =C-mn'
0m,0 ' P-m,0' 00,-n ' 0,n' but Pm,n l 

0-mn. This follows from the defini-

tion of Px-y,tl-t2, given in section 2. A table of the correlation Pmon for

01 = .2, 02 -.6 is presented.

TABLE 3

CORRELATIONS 0m,n IN AR MODEL

01 . .2, €2 -.

n

m 0 1 2 3 4 5 6 7 8
8 .01 .03
7 -.01 -.04 -.06

6 .01 .02 .07 .09 .07

5 -.01 -.04 -.11 -.12 -.09 -.05
4 .01 .02 .06 .17 .17 .11 .06 .03

3 -.01 -.03 -.09 -.26 -.22 -.12 -.06 -.02 -.01
2 .04 .13 .41 .28 .13 .05 .02 .01

1 -.21 -.64 -.32 -.13 -.05 -.05 -.02 -.01

0 1.00 .33 .11 .03 .01

-1 -.21 -.07 -.02 -.01

-2 .04 .01

-3 -.01

The numbers in the blank spaces are zero.

Every AR model has a cutoff property given by the partial autocorrelation
function, 0i in this case; 0i # 0 for i - 1,2; 0i - 0, i 99 1,2, where 0i is

determined by the Yule-Walker equations corresponding to AR models, r > 2.
For an m - I model is of order one if 3,04,...,.r, are zero as determined
by the partial coefficient of correlation, Taneja and Aroian (6).

The approximate estimated variances and covariances of (01,02) given by
G?2 8? -I - -2 -I 2_2_
o01 02 1) 1-12-20102 r,) and1 (6.10)

01'42 -r10

are approximate maximum likelihood results, if the a ' are distributed
normally, are asymptotically unbiased, consistent, adtminimum variance. Let

R2 , -, (r01,rll), ' i,21

1 /



n- R

1 n-lCl-r
1
*) R2' . r- (l-rol~-rnli2) R2 ,

where V(;1 ,0 2) is the variance-covariance matrix of (1i2). The minimum

variances of (0142) may be found numerically by varying (ii,2) until the
variance a2 is minimized for the particular sample.

The AR model may be given as an infinite AM model

zx,t .j x-i't-j
i-0 i-O

2 2
oo', 01*O 1, I11l02' 02=01, 1 2, 2l22 tV 22"2' (6.11)

P0j=0l10j-l
, 4

ijml'i,j-l+
4
2 i-1,j-l, 4jj="2j-l,j- °

like (4.1) replacing nij by Jij, and ei by 0i.

For €1-.2, t2'-.6, 'Po0', P01=.2, qii11 6, P02".04,

12=-.24, P22".36, 
4
U3

-0 08 , 
Y 13--.072, %23=.216,

IP33=.216, etc.

An AR model simulation is given in Perry and Aroian (4).

7. ARMA MODELS

The results of Oprian et al. (7) are used freely in addition to some new
results mainly in the determination of values of { 1 ,42 ,e1 ,82 as related to

the values of { 0 1 , 10,01 1 ,}1 1 ). The results are:

02  o2{-6 1 (4l-el)-e 2 (02 -6 2 )](i-t 1 00 1 -$2ri 0 )- ,z a

2 22 22P o l 0 1 + 2 0 11 - 1 a a / 0 ;  1 a z 1 % 2 0I 0 - 0 1 ( 7 .1 )

S:2 !/2 +011 , 0 2- 2 2'a/oz = "€110+2- 11

010 "l101-l+2001-62(0-)1)a 2 "
az

The second and third equations may be solved for e.o2/o and these results
i a s

substituted in the first and fourth equations to obtain {41 ,42 ,e1,e2 }. If

I .2-0, or e-e -20, the corresponding MA or AR models are obtained. For

m,n z 2,

0m,n = 0lPm,n l+42Pm-l,n-l (7.2)

The ARMA model may be represented as an infinite moving MA model

i ijax t, or (7.3)

an infinite AR model

ir0 1-0 j I (7.4)

restrictions already noted 101 t+[f 2 1<l and fej+jfe21<l, naturally restricting

the values of (001,010,011) also. The infinite MA model is given by



Zx,t (1-1Bt-e 
2 BxBt)(1 -f1Bt' 2 BxBt -lax,t "

(7.5)(1-e B -e2B Bt { +0(P+Bx)'B ax,t ,
1t2 x t i=012

with 1P 00I,1 o-l-ol 01i02- 02' 02 li

12 -i2+20102- 291 ..... 00j'0l1P0,j-l
•

4,ij- li,j-l+02?i-l,j-l
, 
oiid2 i-l,_8-1 (7.6)

Similarly the AP4A model as an AR model:

0= I0 , 01 - 1 -401 , "i 62- 2' '02 = 1(81-0 1

112 = -6102+2102- 021' "22 02(62- 2 (7.7)

S e
Oj 1'0,j-l' 'ij = '1'i,j-l+82'i-l,j-i

'

rii 2 i_1,i_•

Note (3.10) and (6.11) are special cases of (7.5) and (7.6). For

I = .2, €2 -.6, e1 = .2, 82 = 5,

100 = I 
8
l = - 1 1 0 12 .02, = -.6, 13 -.004, (7.8)

W 23 - .024, 3 -.036, etc.

The autocorrelation function must be found by using (7.5) and

2 -1
Cm,n ' (:E ij i-m,j-n) (1Z4ij m - n 1 0 (7.9)

and
02 .,. 2 (7.10)

z a ij

Thus c
2
/0a - 1.01741, obtained from (7.9) and (7.10), must be used in (7.1)

to solve for { 01,.10 ,cllP 11 = 1.058,-.091,-.127,-.213) as compared to the

MA model {-.155,-.078,.389,0), and the AR model (.33,-.21,-.64,-.07). In
fact, had 0l = .2, 2 -.6, e1 . .2, e2 = -.6, been chosen, then the ARMA

model would have been reduced to (1-.2Bt+.6B B )z -(I-.2B +.6B )a ., or

zx,t Sax,t 
!  

Conversely, had a sample set of za ,  ,r' been

given, estimates (;,;2,1,92) could be found from (7.1) as already given by

substituting the sample estimates for the population values. These results
with the exception of (7.1) and the methods of solution given there are due
to Robert Perry in his ongoing Ph.D. thesis.

How may the estimates of ({i,02 ,e1 ,e2 ) in a sample of n be found? One method

is to choose the set {;i,2,ei,;2 which minimizes sr the sample estimates

of a as done in 4 by varying the four constants numerically. The other
meth~d is to find the corresponding AR model through r22 and then apply the
method given in section 5.

8. FORECASTING

Now that the models have been defined, their properties given, it is necessary
to show how these results may be used for forecasting. It should be realized
that in forecasting it is not necessary to assume the future repeats the past.
All that is needed is to assume that the errors of the past will be repeated
in the future, although the events themselves will not necessarily be



formulas must not be used blindly, but must be checked carefully.

In the MA case (2.1):

Zx4llt+1 
2 - &x+ llt+12 -ax+ 1 ,t+f 2 - 1- 2 ax+I ,+£ , (8.11)

ex+61 ,t+6 2 - ax+t 1 ,t+E 2 -1laX+tllt+k2-1-e2ax+jl't+ 2-1 (8.12)

ix,t (tll,2 . 02 2 2 2

0 21(kilk21z .°a +el.e2
)  

'(8.13)
z 1' 2

for 1 2 or 12 2 2. The other cases are

Xt - x t- 2 x l t zx (1,0) = -zx,t(0,1) - -laxt82ax.1,t, Zx,t(10 2 -ax,t-l

ex.t(O'l) axt+. ex,t(l.O) - ax.l't- la,+lt-i (8.14)

zx"t lel) -+ e (11) a ,t l- lax+ t

and (0,) -. 2, o2(1,) _ 2 (1+62), .2 (l) - . (1+62)
eIa 1

The more general ARMA model is changed to infinite MA model given in (7.5),
and terms as far as s10,10 carried for accuracy. The method is exactly the

same. The models may be updated as new results are obtained.

Forecasts and forecast errors are correlated. In any MA im.,;el (and by
extension any AR model or ARMA model) the forecast errors are.

ex,t (0,) - ax,t+l ex,t (1,0) - ax+ t-e lax+l,t I

ex,t(1,1) - ax+ltt+l- 1ax+t,t-

Hence

~ex,t (0,1), ext (1,0)) = P{(e Xt(O,l), ex't(ll)} 0,

c(ex, (1,0). ex, 
(I 2) -) (8.16)

xt =8(1 I1

Correlations among other forecast errors may be found. Forecasts are also
correlated. From (8.14)

fx t (0.1),;Xt(1,0)) {zix,t(l,0),zx,t(l l)) - 0,

but

2 2 -1/2pf x,t (,l),ix,t(l,l)) e 1 (e1 +e2) (8.17)

The autocorrelation function for forecasts and forecast errors may be found
in a similar manner.

It has been assumed in the foregoing that all constants 8. are exact where in
fact estimates of 6. are used, including the sample mean . A discus-

sion of this matter is given in Box and Jenkins (5), pages 267-268. For the
mean, an additional source of variation, the o

2
/n is added to the formula

2 a
for 2: given in (8.10) and is important if n is fairly small, n s 100,

depending on the model. For the power spectra of the discussed models, see
the papers of Voss at al. (3), Taneja and Aroian (6), and Oprian et al.
(7).
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